
Improving activity classification using ontologies
to expand features in smart environments

Alberto Salguero1 and Macarena Espinilla2

1 alberto.salguero@uca.es Universidad de Cádiz, Cádiz, Spain
2 mestevez@ujaen.es Universidad de Jaén, Jaén, Spain

Abstract. Activity recognition is a promising field of research aiming
to develop solutions within smart environments to provide relevant so-
lutions on ambient assisted living, among others. The process of activity
recognition aims to recognize the actions and goals of one or more person
in a environment with a set of sensors are deployed, basing on the sensor
data stream that capture a series of observations of actions and environ-
mental conditions. This contributions presents the initial results from a
new methodology that considers the use of ontologies to expand the set of
feature vector, which is computed by using the sensor data stream, that
is used in the process of activity recognition by data-driven approaches.
The obtained results indicates that the use of extended feature vectors
provided by the use of ontology offers a better accuracy regarding the
original feature vectors used in the process of activity recognition with
different data-driven approaches.

Keywords: Activity recognition; Smart environments; Ontology; Data-
Driven approaches; Knowledge-Driven approaches

1 Introduction

Sensor-based activity recognition [2] is a very relevant process at the core of
smart environments. This type of activity recognition is focused on recognizing
the actions of one or more persons within the smart environment based on a
series of observations of sub-actions and environmental conditions over a period
of finite time. It can be deemed as a complex process that involves the following
steps: i) select and deploy the appropriate sensors to be attached to objects
within the smart environment; ii) collect, store and pre-process the sensor related
data and, finally, iii) to classify activities from the sensor data through the use
of activity models.

The sensor-based activity recognition is particular suitable to deal with ac-
tivities that involve a number of objects within an environment, or instrumental
activities of daily living (ADL)[9]. Approaches used for sensor-based activity

©Springer International Publishing AG 2017. This is a preprinted version of the
paper. The final publication is available at Springer via http://dx.doi.org/10.

1007/978-3-319-67585-5_40.

http://dx.doi.org/10.1007/978-3-319-67585-5_40.
http://dx.doi.org/10.1007/978-3-319-67585-5_40.

recognition have been divided into two main categories: Data-Driven (DDA)
and Knowledge-Driven (KDA) approaches [2].

The former, DDA, are based on machine learning techniques in which a
preexistent dataset of user behaviors is required. A training process is carried
out, usually, to build an activity model which is followed by a testing processes to
evaluate the generalization of the model in classifying unseen activities [10]. The
advantages of the DDA are the capabilities of handling uncertainty and temporal
information. However, these approaches require large datasets for training and
learning, and suffer from the data scarcity or the cold start problem.

There are repositories which contain several ADL datasets in smart environ-
ments. One of the most well-known repositories is CASAS3 [6]. In the context,
it is interesting to mention the Open Data Initiative (ODI) [11] for Activity
Recognition consortium that aims to create a structured approach to provide
annotated datasets in an accessible format.

With KDA, an activity model is built through the incorporation of rich prior
domain knowledge gleaned from the application domain, using knowledge engi-
neering and knowledge management techniques [3,5]. KDA has the advantages of
being semantically clear, logically elegant, and easy to get started. Nonetheless,
they are weak to deal with uncertainty and temporal information as well as the
activity models can be considered as static and incomplete.

In the context of KDAs, ontologies for activity recognition have provided
success results. In this kind of approach, interpretable activity models are built
in order to match different object names with a term in an ontology that is
related to a particular activity.

Some hybrid approaches have been developed [4,12] that take advantage of
the main benefits provided by DDAs and the use of an ontology. Thereby, onto-
logical ADL models capture and encode rich domain knowledge and heuristics
in a machine understandable and processable way.

This contribution of our current work proposes to use an ontology in order
to extend the feature vectors to enrich these vectors through inferred knowledge
in the ontology, improving the accuracy of classifiers based on DDAs used in the
recognition of activities against the unextended feature vectors.

An evaluation is undertaken with a popular dataset to consider the effects of
the extension of feature vectors in terms of overall accuracy for activity recog-
nition based on sensor data gleaned from smart environments.

The remainder of the paper is structured as follows: Section 2 reviews some
notions about ontologies that are needed to understand our proposal. Section
3 proposes the methodology to extended the set of feature vectors by means of
an ontology. Section 4 presents an empirical study that analyzes our proposed
methodology of extended feature vector in terms of accuracy based on a popular
dataset by using the ontology. Finally, in Section 5, conclusions and future work
are presented.

3 http://ailab.wsu.edu/casas/datasets/ (last checked on April 19, 2017)

Table 1. Semantic of OWL logical operators

DL syntax Manchester syntax Semantics

I C1 u C2 C1 and C2 (C1 u C2)I = (CI
1 ∩ CI

2)
U C1 t C2 C1 or C2 (C1 ∪ C2)I = (CI

1 ∪ CI
2)

C ¬C not C (¬C)I = ∆I \ CI

S ∃R.C R some C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
A ∀R.C R only C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
X ≤ nR.C R max n C (≥ nR.C)I = {x | card {y.〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ n}
M ≥ nR.C R min n C (≤ nR.C)I = {x | card {y.〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n}

2 Review of ontologies

In this section some relevant concepts related to ontologies are reviewed in or-
der to understand our proposed methodology. Ontologies are used to provide
structured vocabularies that explain the relations among terms, allowing an un-
ambiguous interpretation of their meaning. Ontologies are formed by concepts
(or classes) which are, usually, organized in hierarchies [1,14], being the ontolo-
gies more complex than taxonomies because they not only consider type-of rela-
tions, but they also consider other relations, including part-of or domain-specific
relations [8].

A formal language for working with ontologies is OWL [7,13], which is de-
veloped by the World Wide Web Consortium (W3C). The design of OWL is
greatly influenced by Description Logics (DL), particularly in the formalism of
semantics, the choice of language constructs and the integration of data types
and data values.

In an ontology, the symbol > stands for the top concept of the hierarchy,
all being concepts subsets of >. The subsumption relation is usually expressed
using the symbol A v B, meaning that the concept A is a subset of the concept
B. Concepts can also be specified as logical combinations of other concepts.
The semantic of operators for combining concepts is shown in Table 1, where
C,C1, C2 v >, R is a relation among concepts, ∆I is the domain of individuals
in the model and I is an interpretation function.

3 Methodology

This section describes the proposed methodology, which is made up of several
independent applications. The purpose of the methodology is to add relevant
features to the dataset to improve the accuracy of the classifiers in DDA by
means an ontology.

3.1 An ontology for the description of activities

To describe the activities in [15] an ontology has been developed in OWL. The
ontology defines two basic concepts, Activity and Event, which respectively rep-

Fig. 1. Ontology example.

resent all the activities in the dataset and the activation of the sensors during
these activities. Fourteen new subclasses of the Event class have been defined,
each of them representing the activation during the activity of each of the sen-
sors in the dataset4. The class Frontdoor set, for example, represents the set of
events corresponding to the activation of the sensor in the front door.

To relate sensors events to the activities we have defined four properties,
shown in Figure 1. The properties startsWith and endsWith relate a particular
activity to the first and the last events that occur during that activity, respec-
tively. Both properties have been defined as functional, since an activity can only
begin and end with a unique event. They have been declared as sub-properties
of the hasItem property, which relates an activity to the events that have oc-
curred during that activity. The property hasItem has been defined as inverse
functional, since an event may occurs just in one activity. The class description
hasItem some Frontdoor set, for example, represents all those activities during
which the front door sensor has been fired.

The order among events produced in an activity is maintained through the
hasNext property. This property has been defined as functional and inverse func-
tional, since an event can only be immediately followed or preceded by a single
event. It has also been declared as an asymmetric and irreflexive property, since
an event that happens after another event cannot happen before the former
one, nor after itself. This property allows us to describe activities as chains of
events. The class description startsWith some (Frondoor set and hasNext some
(Fridge set and hasNext some Dishwasher set)), for example, represents the ac-
tivities that begin with the activation of the sensor of the front door, which is
immediately followed by the activation of the fridge sensor and then by the dish-
washer sensor, immediately. The activity #Activity24 in Figure 1 is an example
of activity described by the above class description.

4 For simplicity, only the activation of the sensors has been taken into account for the
experiment in Section 4.2. However, it is also possible to consider the deactivations
of the sensors by just enabling a flag in the application developed for loading the
dataset in the ontology.

The hasNext property has been declared as a subproperty of the isFollowedBy
transitive property, which relates an event to all events that happen after it in
an activity. Events related through the latter property do not have to occur
consecutively in the activity. The class description hasItem some (Frontdoor set
and isFollowedBy some Dishwasher set) is another way of describing the activity
#Activity24 of the example in Figure 1.

Due to the high formalization of ontologies, it is not necessary to make all
relations in the dataset explicit. Many of them may be inferred by the rea-
soner. Knowing that #Event15 hasNext #Event16, the reasoner may infer that
#Event15 isFollowedBy #Event16, since hasNext v isFollowedBy. In addition,
if #Event16 hasNext #Event17, the reasoner may easily infer that #Event15 is-
FollowedBy #Event17, since the property isFollowedBy has been declared as
transitive.

3.2 Extended features generation

In this section we explain how the features are generated from the information
in the ontology. Basically, the idea consists on the combination of the entities in
the ontology (concepts and relations), by means of logic operators, to generate
new class descriptions that may be useful for the classification of the activities.
Eventually, a class description that describes certain kind of activities may be
found and selected as a new feature for the classifiers. The process is repeated
until sufficient number of new relevant features are found. All the components
of the methodology proposed in this work and how the information flows among
them are explained in this section.

The system starts from a dataset with a set of labeled activities. First of
all it is necessary to convert the dataset information into an ontology. In the
experiment described in Section 4.2 an application has been developed to convert
the information in [15] into an ontology following the rules in Section 3.1. In this
first step two text files are also generated that contain: a) the list of individuals in
the ontology of the kind of activity to be recognized by the classifier (positives),
and b) the rest of individuals (negatives). These lists of individuals will be used
to generate the input data for the classifier in a later step.

Next, it is necessary to expand the definition of the Activity concept in the
ontology. The expansion process consists on generating new class descriptions
that represent different patterns of activities, without taking into account the
specific type of activity that is going to be recognized by the classifier. More
specifically, the OWLExpand program takes the concept to be expanded (Ac-
tivity) as an argument and uses a given set of classes, properties and operators
to construct new class descriptions in DL. All the concepts in the ontology that
at least describe some individual in the ontology have been taken as the set of
classes L. All properties defined in the ontology have been taken as the set of
properties P . The set of operators O is specified by the user and consists on
a subset of all operators that can be used to combine class descriptions (see
Section 2).

Fig. 2. Functional architecture.

The expansion process begins by combining all the concepts in L by means
of O operators. The complement operator (C) results in class expressions of the
form not ci, where ci ∈ L. Class expressions such as not Cupboard set or not
Activity are produced using the complement operator, for example.

All class descriptions in L are combined with themselves in the case of op-
erators that require two class descriptions, resulting in expressions of the form
ci ok cj , where ci, cj ∈ L, i 6= j and ok ∈ {and, or}. In this process, expressions
such as Event and Cupboard set or Cupboard set or HallBedroom Door set are
generated, for example.

There are operators that require a property to form valid class descriptions.
They are the existential quantifiers and the universal quantifier. In this case,
the expansion process combines all class descriptions in L with all properties
in the ontology, producing expressions of the form pi ok cj , where pi ∈ P ,
ok ∈ {some, all} and cj ∈ L. startsWith some HallBedroom Door set or isFol-
lowedBy all Cupboard set are examples of expressions generated by existential
and universal quantifiers. These class expressions represent all those individu-
als that begin with the firing of the HallBedroom Door sensor and all those
individuals that are only followed by Cupboard sensor activations, respectively.

The last type of operator that implements the OWLExpand application is
the cardinality constraints. These operators limit the number of individuals to
which an individual may be related among a given property. The class descrip-
tions generated with this operators have the form pi ork n cj , where pi ∈ P ,
ok ∈ {min,max, exact}, cj ∈ L and n ∈ N . Expressions such as isFollowedBy
min 4 Event or isFollowedBy exact 2 Cupboard set are generated, for example,
representing the set of individuals followed by at least four sensor activations
and the set of individuals followed by exactly two activations of the Cupboard
sensor, respectively. The number of constraints to be generated is virtually infi-
nite since n ∈ N . It is the user who must specify the values for n. For example,
n ∈ {2, 3} in the experiment of Section 4.2.

All the expressions generated are added to L and the process is repeated
again. However, not all of the expressions generated are relevant. Some of them

Table 2. Example of resultant data

startsWith some hasItem min 2
Activity HallBedroom Door set Hall-Bedroom door set Positive

1 1 0 1
2 0 1 0
3 1 1 1
4 0 0 1

are simply unsatisfiable. A class expression such as hasItem some Activity, for
example, is unsatisfiable since the range of the property hasItem is the Event
concept, which is defined to be disjoint with the concept Activity. There cannot
be an individual in the ontology which meets such restriction. For the same
reason, expressions like hasItem some startsWith some HallBedroom Door set
are also unsatisfiable, since the domain of the startsWith property is the concept
Activity. Only satisfiable class expressions are added to L.

On the other hand, not all class expressions in L describe activities. With
the help of the reasoner, a new set V ⊆ L is created, which contains all the
class expressions in L that describe activities. These are the expressions that the
program OWLExpand produces as result, in a text file.

The OWLVectorize application takes the class expressions generated in the
previous step as input and produces a table with k rows and n binary columns,
where k is the number of annotated activities in the dataset and n is the number
of class descriptions generated in the expansion process. Each of the rows is
therefore a vector F k = {fk1 , ..., fkj , ..., fkn , fkn+1}. Each of the n generated class

expressions corresponds to a feature fkj ∈ F k. F k
j = 1 if the activity k is an

instance of the class description j. F k
j = 0 otherwise. F k

n+1 = 1 if the activity k
is an instance of the kind of activity to be recognized by the classifier (positive).
F k
n+1 = 0 otherwise. The list of annotated individuals generated at the beginning

of the process is used for this purpose. An example of the results obtained by
this application is shown in Table 2.

4 Experiment

In this contribution, a popular activity recognition dataset [15] of a a smart
environment is used to evaluate the performance of our proposal. In this sec-
tion we first describe the dataset and the experiment. Then, we compare the
results obtained by classifiers using the classical approach and classifiers using
the methodology proposed in this work.

4.1 From the sensor data stream to feature vectors

The dataset [15] used in the experiment to evaluate our proposal is composed
by binary temporal data from a number of sensors, which monitored the ADLs

Fig. 3. Partial sensor data stream of a dataset and its computed feature vector

carried out in a home setting by a single inhabitant. This dataset was collected in
the house of a 26-year-old male who lived alone in a three-room apartment. This
dataset contains 245 activities that are annotated in the stream of state-change
sensors generated by 14 binary sensors.

Each sensor is located in one of 14 different places within a home setting:
microwave, hall-toilet door, hall-bathroom door, cups’ cupboard, fridge, plates’
cupboard, front door, dishwasher, toilet flush, freezer, pans’ cupboard, washing
machine, groceries’ cupboard and hall-bedroom door. Sensors were left unat-
tended, collecting data for 28 days in the apartment. Activities were annotated
by the subject himself using a Bluetooth headset.

Seven different activities are annotated, namely: going to bed, using toilet,
preparing breakfast, preparing dinner, getting a drink, taking a shower and leav-
ing the house.

Usually, feature vectors of the dataset are computed from the temporal
dataset, the sensor data stream is discretized into a set of time windows, de-
noting each time window by W k that is limited by each activity. The set of
activities are denoted by A = {a1, ..., ai,, aAN}, being AN the number of
activities of the dataset.

Each feature vector is denoted by F k and has NS + 1 components, being
NS the number of sensors in the dataset denoted by S = {s1, ..., sj ,, sNS

}.
Therefore, each computed feature vector in the dataset is defined by the following
equation:

F k = {fk1 , ..., fkj , ..., fkNS
, fkNS+1}

being fkj ; j = {1, ..., NS} a binary value that indicates if the sensor si was fired

at least once, 1, or was not fired 0 in this time window W k. The last component
fkNS+1 ∈ A indicates the activity carried out in the time window W k.

4.2 Experiment description

In order to evaluate the quality of the methodology proposed in this work an
experiment has been carried out, in which the dataset in [15] have been used.
The objective of the experiment is to determine whether or not a particular
activity has been performed based on the sensors that have been fired during
a specific period of time. To simplify the experiment, the time intervals always
correspond to the annotated activities in the dataset.

The results obtained by four classifiers that use a classic DDA to solve this
problem have been taken as reference to measure the efficiency of our proposal.
For this purpose an application that identifies the sensors that have been fired
during each of the activities has been built. The application generates a file in
Weka format, following the structure presented in Section 4.1. This file contains
an instance for each activity and as many features as sensors in the dataset.
All the features are binary and specify if the sensor has been fired during the
activity or not. Finally, it includes a class attribute, also binary, that indicates if
it is the activity that the classifier is learning to identify or not. Each experiment
consists, therefore, in determining which combination of sensors are fired for a
particular activity, such as ’take shower’, for example.

By using the Weka data mining software, we have generated C4.55, Sequen-
tial Minimal Optimization (SMO), Voted perceptron (VP) and Decision Table
(DT) classifiers for all the activities in the dataset. The most difficult activities
to be identified are ’go to bed’ and ’use toilet’, with 94.67% and 91.97% accu-
racy, respectively. These are the activities chosen to test the performance of the
proposed system in this work.

Starting from the ontology proposed in Section 3.1, to which the information
contained in [15] has been added, the OWLExpand program is used to generate
new class descriptions automatically. All new class descriptions describe the
Activity concept. Three subsets of operators have been used to generate three
different sets of new class descriptions. For the first one, all available operators
(ACIXMSU) have been used. The complement, minimum cardinality and the
existential quantifier operators (CMS) have been used for the second one and
only the existential quantifier (S) has been used for the latter. In addition,
versions with 50, 100, 150 and 200 class expressions have been generated for
each of these sets.

All files with new class descriptions are evaluated by the OWLVectorize ap-
plication and a new file in Weka format is generated for each of them. The same
four types of classifiers that were employed to evaluate the performance of the
classifiers using the classical approach have been used to evaluate the accuracy
of the classifiers based on the new approach. Results are discussed in the next
section.

4.3 Results

The accuracy obtained by all the different classifiers generated in the previous
section for the ’go to bed’ and ’use toilet’ activities are shown in the Table 3 and
Table 4, respectively. The first column indicates the approach used to generate
the |F| features for the classifier, in the second column. The remaining columns
indicate the accuracy of the corresponding classifier, in percentage values.

The first row contains the data related to the classifiers constructed using
the classical approach. This approach yields a precision of 94.67 % for the best
case of the activity ‘go to bed’. In spite of being a very high value, most of the

5 The Weka implementation of the C4.5 classifier is called J48.

Table 3. ’Go to bed’ classification accu-
racy

Dataset |F| C4.5 SMO VP DT

Classic 14 93,87 94,67 91,72 94,67
ACIXMSU 50 90,65 91,04 90,37 90,23
ACIXMSU 100 98,66 98,51 96,48 98,79
ACIXMSU 150 98,66 98,78 97,02 98,79
ACIXMSU 200 98,66 98,37 93,63 98,79
CMS 50 90,65 91,04 90,37 90,23
CMS 100 98,24 99,06 96,06 98,38
CMS 150 98,24 98,38 94,16 98,38
CMS 200 98,24 98,38 92,81 98,38
S 50 98,52 98,38 93,88 98,79
S 100 98,52 98,92 92,13 98,79
S 150 98,11 98,24 96,21 98,11
S 200 98,11 98,38 96,73 98,11
S 300 98,11 98,24 94,70 98,11
S 400 98,11 98,38 94,58 98,11
S 500 98,11 98,66 95,39 98,11

Table 4. ’Use toilet’ classification accu-
racy

Dataset |F| C4.5 SMO VP DT

Classic 14 91,97 91,16 89,39 90,09
ACIXMSU 50 86,53 87,33 84,88 85,03
ACIXMSU 100 95,77 96,86 93,72 94,8
ACIXMSU 150 95,77 96,16 92,9 94,8
ACIXMSU 200 95,77 96,3 91,94 95,07
CMS 50 86,53 87,33 84,88 85,03
CMS 100 95,77 95,76 90,33 94,53
CMS 150 95,22 96,16 90,19 93,71
CMS 200 95,22 96,29 89,79 93,71
S 50 96,32 96,32 91,28 95,76
S 100 95,62 97,67 90,87 94,81
S 150 97,26 97,53 92,76 94,96
S 200 97,26 97,26 91,55 94,96
S 300 97,26 97,53 90,59 94,96
S 400 97,26 96,72 90,46 94,96
S 500 97,26 96,45 89,53 94,96

classifiers created with the approach proposed in this work surpassed that value.
The worst results are obtained for classifiers using the new approach, but just
when the number of features (class descriptions) generated is insufficient.

Regarding the accuracy of the classifiers with respect to the set of operators
used, it is noteworthy that there is no significant difference. The best values
obtained for ACIXMSU , CMS and S have been 98.79, 99.06 and 98.92 %, re-
spectively. All these values have been obtained for one hundred or more features.

However, there is a significant difference in the time required to evaluate the
class descriptions generated from the different sets of operators. The total time
required for the generation and evaluation of the different characteristics varies
between 2.07 and 1577.28 seconds. The best precision for the activity ’go to bed’
is obtained for the classifier CMS, using a total of 233.84 seconds to obtain an
accuracy of 99.06 %. However, it takes only 2.60 seconds to get an accuracy of
98.92 % for the classifier that only uses the existential quantifier as the operator
to generate the class expressions (S).

The class expressions generated by the S classifier include, for example,

hasItem some (isFollowedBy some Hall-Toilet door set) (1)

startsWith some (hasNext some Hall-Bathroom door set) (2)

which represent activities in which there is a sensor that is fired before the
Hall-Toilet door sensor (1) and activities in which the Hall-Bathroom door is
the second sensor that has been fired (2).

A very similar behavior is observed in the case of the activity ’use toilet’.
As shown in Table 4, the accuracy of the classifiers using the methodology pro-
posed in this work increases significantly when one hundred or more features
are generated. It goes from an accuracy of 91.92 % with the best case of DT to
an accuracy of 97.67 % when only the existential quantifier (S) is used as the
operator to generate new class expressions.

Table 5. Global classification accuracy

Activity Classic Proposal Gain % Gain

Go to bed 94.67 99.06 4.39 82.36
Prepare dinner 97.68 99.60 1.92 82.76
Take shower 97.96 99.59 1.63 79.90
Use toilet 91.97 97.67 5.70 70.98

Average 95.57 98.98 3.41 79.00

Finally, it should be noted that the classifier based on neural networks (VP) is
the classifier that worst responded to the feature expansion process proposed in
this work. The improvement in the case of the activity ’use toilet’ is insignificant.
In any case, one of the advantages offered by the system proposed in this work
is the possibility of identifying the relevant features for the classifiers. However,
the classifier based on neural networks is the only classifier of the four employed
in the test that does not allow the identification of these features, because it is
a ’black box’ classifier.

Table 5 summarizes the results discussed above and also includes the results
obtained for other two activities in the dataset. Again, we have selected the other
two activities in the dataset for which the classifiers using the classic approach
obtain worst results, shown in the second column. It is worth to note the so high
accuracy values that the classifiers using the classic approach obtain for these
two new activities selected. The third column shows the accuracy of the best
classifier that uses the proposed approach. The difference between those values
is shown in fifth column and, finally, the last column indicates the percentage
of gain achieved by the classifier with respect to the maximum possible gain.
As it can be seen, the classifiers based on the proposal presented in this paper
improve the accuracy obtained by the classifiers using the classic approach in
all cases. The average classification accuracy for the classifiers using the classic
approach is 95.57. The average classification accuracy for the classifiers using the
proposed approach is 98.98. This mean that the classifiers using the proposed
approach have trimmed down the difference with respect to the perfect classifiers
a 79.00%.

5 Conclusion and future work

This contribution has been focused on a new methodology that uses ontology
for the purpose of binary sensor-based activity recognition with DDA in order
to increase the accuracy in the classification process when a single activity is
carried out by a single person. To do so, the set of feature vector computed
by the dataset are extended with the inferred knowledge from the ontology. An
evaluation has been carried out with the following four popular classifiers: C4.5,
Sequential Minimal Optimization, Voted perceptron and Decision Table. Results
from the evaluation demonstrated the ability of the ontology to extend the vector

features to provide an increase of the performance in all evaluated classifiers. Our
future work is addressed on evaluating the proposed methodology by means a
dataset with a greater number of sensors and activities.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 734355 together the Spanish government by research project
TIN2015-66524-P.

References

1. Chandrasekaran, B., Josephson, J., Benjamins, V.: What are ontologies, and why
do we need them? IEEE Intelligent Systems and Their Applications 14(1), 20–26
(1999)

2. Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recogni-
tion. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on 42(6), 790–808 (2012)

3. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive
environments. International Journal of Web Information Systems 5(4), 410–430
(2009)

4. Chen, L., Nugent, C., Okeyo, G.: An ontology-based hybrid approach to activity
modeling for smart homes. IEEE Transactions on Human-Machine Systems 44(1),
92–105 (2014)

5. Chen, L., Nugent, C., Wang, H.: A knowledge-driven approach to activity recog-
nition in smart homes. IEEE Transactions on Knowledge and Data Engineering
24(6), 961–974 (2012)

6. Cook, D., Schmitter-Edgecombe, M., Crandall, A., Sanders, C., Thomas, B.: Col-
lecting and disseminating smart home sensor data in the casas project. In: Pro-
ceedings of the CHI Workshop on Developing Shared Home Behavior Datasets to
Advance HCI and Ubiquitous Computing Research (2009)

7. Horrocks, I., Patel-Schneider, P., Van Harmelen, F.: From SHIQ and RDF to OWL:
The making of a web ontology language. Web Semantics 1(1), 7–26 (2003)

8. Knijff, J., Frasincar, F., Hogenboom, F.: Domain taxonomy learning from text:
The subsumption method versus hierarchical clustering. Data & Knowledge Engi-
neering 83(0), 54–69 (2013)

9. Korhonen, I., Parkka, J., Van Gils, M.: Health monitoring in the home of the
future. IEEE Engineering in Medicine and Biology Magazine 22(3), 66–73 (2003)

10. Li, C., Lin, M., Yang, L., Ding, C.: Integrating the enriched feature with machine
learning algorithms for human movement and fall detection. Journal of Supercom-
puting 67(3), 854–865 (2014)

11. Nugent, C., Synnott, J., Santanna, A., Espinilla, M., Cleland, I., Banos, O., L.J.,
Hallberg, J., Calzada, A.: An initiative for the creation of open datasets within the
pervasive healthcare. pp. 180–183 (2016)

12. Rafferty, J., Chen, L., Nugent, C., Liu, J.: Goal lifecycles and ontological models
for intention based assistive living within smart environments. Computer Systems
Science and Engineering 30(1), 7–18 (2015)

13. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Web Semantics 5(2), 51–53 (2007)

14. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications.
Knowledge Engineering Review 11(2), 93–136 (1996)

15. Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recog-
nition in a home setting. pp. 1–9 (2008)

	Improving activity classification using ontologies to expand features in smart environments

